

12-port sector antenna, 4x 698–896 and 8x 1695–2360 MHz, 65° HPBW, 6x RET.

- Features broadband Low Band (698-896 MHz) and High Band (1695-2360 MHz) arrays for 4T4R (4X MIMO) capability for Band 14, AWS, PCS and WCS applications
- Independent tilt for all arrays
- Array configuration provides capability for 4T4R (4x MIMO) on Low band and Dual 4T4R (4x MIMO) on High band
- Optimized SPR performance across all operating bands
- Excellent wind loading characteristics

OBSOLETE

This product was discontinued on: November 30, 2023

Replaced By:

NNH4-65C-R3B-V1 12-port sector antenna, 4x 698-896 and 8x 1695–2360 MHz, 65° HPBW, 3x RET, 3x SBT.

General Specifications

Antenna Type	Sector
Band	Multiband
Grounding Type	RF connector inner conductor and body grounded to reflector and mounting bracket
Performance Note	Outdoor usage Wind loading figures are validated by wind tunnel measurements described in white paper WP-112534-EN
Radome Material	Fiberglass, UV resistant
Radiator Material	Low loss circuit board
Reflector Material	Aluminum
RF Connector Interface	4.3-10 Female
RF Connector Location	Bottom
RF Connector Quantity, high band	8
RF Connector Quantity, low band	4
RF Connector Quantity, total	12

Remote Electrical Tilt (RET) Information

RET Hardware

CommRET v2

Page 1 of 5

NNH4-65C-R6-V1

RET Interface	8-pin DIN Female 8-pin DIN Male
RET Interface, quantity	1 female 1 male
Input Voltage	10-30 Vdc
Internal RET	High band (4) Low band (2)
Power Consumption, idle state, maximum	1 W
Power Consumption, normal conditions, maximum	8 W
Protocol	3GPP/AISG 2.0 (Single RET)
Dimensions	
Width	498 mm 19.606 in
Depth	197 mm 7.756 in
Length	2438 mm 95.984 in
Net Weight, without mounting kit	46.8 kg 103.176 lb

Array Layout

_		Array	Freq (MHz)	Conns	RET (SRET)	AISG RET UID
		R1	698-896	1-2	1	CPxxxxxxxxxxxxR1
2	¥4	R2	698-896	3-4	2	CPxxxxxxxxxxxxR2
		¥1	1695-2360	5-6	3	CPxxxxxxxxxxxxxXXXXXXXXY1
		Y2	1695-2360	7-8	4	CPxxxxxxxxxxxxxXXXXXXXY2
1	Y3	Y3	1695-2360	9-10	5	CPxxxxxxxxxxxxXXXXXXXXXXY3
- ₹1	R2	¥4	1695-2360	11-12	6	CPxxxxxxxxxxxxxXXXXY4

(Sizes of colored boxes are not true depictions of array sizes)

Port Configuration

Bottom

Right

Left

Electrical Specifications

Impedance	50 ohm
Operating Frequency Band	1695 – 2360 MHz 698 – 896 MHz
Polarization	±45°
Total Input Power, maximum	900 W @ 50 °C

Electrical Specifications

Frequency Band, MHz	698-806	806-896	1695-1880	1850-1990	1920-2180	2300-2360
Gain, dBi	15.7	16.1	17	17.5	17.7	17.8
Beamwidth, Horizontal, degrees	75	73	58	59	61	59
Beamwidth, Vertical, degrees	9.7	8.6	7.9	7.4	7	6.3
Beam Tilt, degrees	2-12	2-12	2-12	2-12	2-12	2-12
USLS (First Lobe), dB	19	19	17	18	20	18
Front-to-Back Ratio at 180°, dB	32	33	39	42	39	40
Isolation, Cross Polarization, dB	25	25	25	25	25	25
Isolation, Inter-band, dB	25	25	25	25	25	25
VSWR Return loss, dB	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0

Page 3 of 5

NNH4-65C-R6-V1

PIM, 3rd Order, 2 x 20 W, dBc	-153	-153	-153	-153	-153	-153
Input Power per Port at 50°C, maximum, watts	300	300	250	250	250	200

Electrical Specifications, BASTA

Frequency Band, MHz	698-806	806-896	1695-1880	1850-1990	1920-2180	2300-2360
Gain by all Beam Tilts, average, dBi	15.2	15.9	16.5	17.1	17.2	17.3
Gain by all Beam Tilts Tolerance, dB	±0.7	±0.4	±0.8	±0.6	±0.6	±0.7
Gain by Beam Tilt, average, dBi	2 ° 15.2 7 ° 15.3 12 ° 15.1	2 ° 15.8 7 ° 16.0 12 ° 15.7	2 ° 16.6 7 ° 16.8 12 ° 16.2	2 ° 17.1 7 ° 17.4 12 ° 16.7	2 ° 17.1 7 ° 17.6 12 ° 16.9	2 ° 17.1 7 ° 17.6 12 ° 16.9
Beamwidth, Horizontal Tolerance, degrees	±2.4	±2.1	±4.8	±2.4	±3.2	±3.8
Beamwidth, Vertical Tolerance, degrees	±0.8	±0.5	±0.4	±0.3	±0.5	±0.3
USLS, beampeak to 20° above beampeak, dB	16	17	14	15	16	16
Front-to-Back Total Power at 180° ± 30°, dB	23	22	31	33	29	27
CPR at Boresight, dB	22	24	20	21	21	20
CPR at Sector, dB	9	б	9	9	7	7

Mechanical Specifications

Effective Projective Area (EPA), frontal	0.9 m ² 9.688 ft ²
Effective Projective Area (EPA), lateral	0.31 m² 3.337 ft²
Mechanical Tilt Range	0°-10°
Wind Loading @ Velocity, frontal	954.0 N @ 150 km/h (214.5 lbf @ 150 km/h)
Wind Loading @ Velocity, lateral	331.0 N @ 150 km/h (74.4 lbf @ 150 km/h)
Wind Loading @ Velocity, maximum	1,235.0 N @ 150 km/h (277.6 lbf @ 150 km/h)
Wind Loading @ Velocity, rear	785.0 N @ 150 km/h (176.5 lbf @ 150 km/h)
Wind Speed, maximum	241 km/h (150 mph)

Packaging and Weights

Width, packed	565 mm 22.244 in
Depth, packed	309 mm 12.165 in
Length, packed	2685 mm 105.709 in

Page 4 of 5

NNH4-65C-R6-V1

Weight, gross

CHINA-ROHS

ISO 9001:2015

64.4 kg | 141.978 lb

Regulatory Compliance/Certifications

Agency

ROHS

UK-ROHS

Above maximum concentration value Designed, manufactured and/or distributed under this quality management system Compliant/Exempted Compliant/Exempted

BSAMNT-3	-	Wide Profile Antenna Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.
BSAMNT-M	-	Middle Downtilt Mounting Kit for Long Antennas for 2.4 - 4.5 in (60 - 115 mm) OD round members. Kit contains one scissor bracket set.

* Footnotes

Performance Note Severe environmental conditions may degrade optimum performance

Page 5 of 5

